Learning Weighted Forest and Similar Structure for Image Super Resolution

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimized Regressor Forest for Image Super-Resolution

The goal of image super-resolution is to recover missing high frequency details of an image given single or multiple low-resolution images. It is a well-known ill-posed problem and requires mature prior knowledges or enough examples to restore high-quality high-resolution images. Recently, many methods formulate image super-resolution as a regression problem. Input image patches are classified ...

متن کامل

Learning-Based Nonparametric Image Super-Resolution

We present a novel learning-based framework for zooming and recognizing images of digits obtained from vehicle registration plates, which have been blurred using an unknown kernel. We model the image as an undirected graphical model over image patches in which the compatibility functions are represented as nonparametric kernel densities. The crucial feature of this work is an iterative loop tha...

متن کامل

Single-image super-resolution via local learning

Nearest neighbor-based algorithms are popular in example-based super-resolution from a single image. The core idea behind such algorithms is that similar images are close in the sense of distance measurement. However, it is well known in the field of machine learning and statistical learning theory that the generalization of the nearest neighbor-based estimation is poor, when complex or high di...

متن کامل

Image Super-resolution via Feature-augmented Random Forest

Recent random-forest (RF)-based image super-resolution approaches inherit some properties from dictionary-learning-based algorithms, but the effectiveness of the properties in RF is overlooked in the literature. In this paper, we present a novel feature-augmented random forest (FARF) for image super-resolution, where the conventional gradient-based features are augmented with gradient magnitude...

متن کامل

Joint Maximum Purity Forest with Application to Image Super-Resolution

In this paper, we propose a novel random-forest scheme, namely Joint Maximum Purity Forest (JMPF), for classification, clustering, and regression tasks. In the JMPF scheme, the original feature space is transformed into a compactly pre-clustered feature space, via a trained rotation matrix. The rotation matrix is obtained through an iterative quantization process, where the input data belonging...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied Sciences

سال: 2019

ISSN: 2076-3417

DOI: 10.3390/app9030543